
Facial Emotion Recognition as an Aid for Autism

Agni Kumar (6.869)
Massachusetts Institute of Technology

Cambridge, MA 02139
agnik@mit.edu

Shannon Duffy (6.819)
Massachusetts Institute of Technology

Cambridge, MA 02139
sduffy@mit.edu

Abstract

We present the designs of various artificially intelligent
systems capable of recognizing emotions through facial ex-
pressions. Various neural network architectures were cus-
tomized, trained, and subjected to classification tasks, after
which the best performing networks were further optimized.
A variety of datasets (fer2013, Jaffe, CK+), as well as one of
our own creation, was used to train the models. We applied
transfer learning on the fully-connected layers of an exist-
ing convolutional neural network that was pretrained for
human emotion classification, as well as evaluated custom
neural networks. We achieved an overall top test accuracy
of 65.7%. The applicability of the final model is portrayed
in our building of a live video application capable of in-
stantaneously classifying users’ emotions and superimpos-
ing faces with appropriate emojis. Through this project, we
worked to develop the foundations of a product capable of
aiding children with autism, who often struggle to read the
subtle nonverbal cues contained in people’s expressions.

1. Introduction
One of the current top applications of artificial intelli-

gence using neural networks is the recognition of faces in
photos and videos. Such techniques involve processing vi-
sual data and searching for general patterns present in hu-
man faces. Facial recognition has several applications, from
surveillance purposes to crowd management to automatic
blurring of faces on Google Street View footage to auto-
matic recognition of Facebook friends in photos. A more
advanced development in this field is emotion recognition.
Emotions facilitate interactions between human beings, and
understanding them can bring valuable context to social
communications.

While emotions can be identified through a variety of
techniques (involving the examination of body language,
voice intonation, electroencephalography waveforms, etc.),
a practical method involves studying facial expressions [2].
In this paper, we review the design choices of existing emo-

tion recognition models and enhance prior techniques with
some new ideas. Given that there are seven types of hu-
man emotions cited to be universally recognizable across
most cultures (happiness, sadness, surprise, anger, disgust,
fear, contempt), a tool to detect changing emotions from
facial expressions would be widely applicable [5]. Some
of the most promising applications of emotion recognition
involve helping children with autism read faces; provided
with a simple cue, such as emojis overlaid onto or near
faces within their fields of view, autistic individuals could
increasingly learn to notice and interpret the social world
around them.

We note that the task of emotion recognition is particu-
larly difficult for two main reasons: (1) that there does not
exist a large database of training images, and (2) that clas-
sifying emotion can be difficult depending on whether the
input image is static or a transition frame into a facial ex-
pression, a challenging issue for real-time detection involv-
ing dynamic varying of expressions.

As underlined within the literature, a highly promising
concept for facial expression analysis is the use of deep
convolutional neural networks (CNNs). Given a limited
amount of available processing resources, we subjected
multiple architectures to an emotion classification problem.
Most classification problems involve examining static im-
ages of facial expressions, but we investigated the applica-
tion of CNNs to emotion recognition in real time with a
video input stream, optimizing the best-performing network
for efficient computation for frame-by-frame classification.
In optimizing our system, we accounted for variations in
lighting and subject position as much as possible, and were
able to successfully implement an application wherein emo-
jis indicating expressions are superimposed over faces in
real time.

2. Related Work
Over the last two decades, researchers have significantly

advanced algorithms used for interpreting pictures. Ap-
proaches may be grouped into two main categories: those
that involve pre-programmed feature extractors used to an-

1



Figure 1. From left to right, examples of images from the fer2013, CK+, and JAFFE datasets

alytically break down several elements in the picture in or-
der to categorize the object shown, and those that involve
self-learning neural networks providing a black-box identi-
fication technique in which the system itself develops rules
for object classification by training on labeled sampled data.

2.1. Common CNN Designs

Commonly used CNNs for emotion recognition include
a set of fully connected layers at the end, which tend to
contain most of the parameters. Recent architectures such
as Inception-v3, reduced the amount of parameters in their
last layers by including a Global Average Pooling operation,
which forces the network to extract global features from the
input image [16]. Additionally, modern CNN architectures
like Xception employ experimental characteristics such as
the use of residual models and depth-wise separable con-
volutions, which reduce the amount of parameters by sep-
arating the process of feature extraction and combinations
within convolutional layers [9]. The state-of-the-art model
for the fer2013 dataset is comprised of a CNN in which 98%
of all parameters were located in the last fully connected
layers; trained with square hinged loss, the model achieved
an accuracy of 71% using approximately 5 million parame-
ters [6].

2.2. Recent Developments

Recent top submissions to the Emotions in the Wild
(EmotiW 2018) contest for static images used CNNs to gen-
erate up to 61% test accuracy [4]. Another recent develop-
ment addressed two important problems relating to facial
image recognition: the scarcity of data for training deep
CNNs, and the variation in appearance caused by differ-
ing training image illuminations. Levi et. al utilized a
Local Binary Patterns (LBP) operator, which possesses a
robustness to monotonic gray-scale changes caused by illu-
mination variations, to transform the image before inputting

them into a CNN. This special data preprocessing was ap-
plied to to various public models like VGG S (achieving
40% accuracy), after which the model was re-trained on the
CASIA WebFace dataset and transfer-learned on the Static
Facial Expressions in the Wild (SFEW) dataset (achieve-
ing 55% accuracy) [13, 8]. We chose to the use this modi-
fied, pre-trained, freely available neural network as a start-
ing point, later following up with proposals for performance
improvements.

3. Approach

To develop a working model, we used three different
datasets. The first was the JAFFE (Japanese Female Fa-
cial Expression) database, which contains 213 images of
60 Japanese females displaying the emotions angry, disgust,
fear, happy, neutral, sadness, and surprise [10]. This dataset
served well for the initial training because the images were
cropped to show only the face, and subjects were looking
directly at the camera. The second database that used was
the extended Cohn-Kanade (CK+) database, which contains
5,876 images of 210 individuals displaying the emotions,
angry, disgust, fear, happy, sadness, surprise, like JAFFE
and contempt instead of neutral [12]. It includes both posed
and unposed expressions, adding great diversity. The fi-
nal database that we used was fer2013, which is a Kaggle
database from Kaggle’s “Representation Learning: Facial
Expression Recognition Challenge” [1]. The database con-
tains 35,000 images with subjects displaying the same emo-
tions as JAFFE: angry, disgust, fear, happy, sad, surprise,
and neutral. This database was the most extensive, so we
used it for most of our final rounds of testing. Examples of
photos from each database can be seen in Figure 1, and a
breakdown of the fer2013 dataset is given in Figure 2.

2



Figure 2. Image distribution of the fer2013 dataset

Figure 3. Confusion matrices for the unaltered VGG S network on
the JAFFE and CK+ datasets

3.1. Applying Transfer Learning

We initially ran the aforementioned VGG S network
on the JAFFE and CK+ datasets, achieving accuracies of
14.08% and 24.27% respectively. Confusion matrices are
depicted in Figure 3. We see that many facial expressions
were incorrectly classified as ‘fear’ for both datasets. We
hypothesized that the low accuaracies may be due to the fa-
cial expressions in the JAFFE dataset being quite subtle and
thus difficult to detect emotion from, and possibly because
there were too few images with ‘fear’ and ‘disgust’ labels
in both the CK+ and JAFFE databases.

To improve facial emotion classification accuracy, we
applied transfer learning, using the pre-trained Transfer-
LearningNN with an Inception-v3 base model [14]. Our
model added a couple top layers to the original model to
match the number of target emotions to be classified and
reran the training algorithm on the fer2013 dataset.

3.2. Creating Custom CNNs

We began by experimenting with a simple CNN (CNN-
1), composed of an input, three convolution layers, one
dense layer, and an output layer. As we hypothesized that
the simple network architecture would would fail to pick
up on the subtler details in facial expressions, we followed
up by building a deeper architecture. After fine-tuning the
number and configuration of convolutional and dense lay-
ers, as well as the droupout percentage in dense layers, we

Figure 4. Depicts one module of the custom CNN

settled on a network nine layers deep, with maxpooling after
every three convolutional layers, followed by two sequen-
tial dense layers (with 15% dropout) and a softmax output
(CNN-2). We hypothesized that this new architecture would
capture fine details with more meticulousness than before.

We designed another custom model as well, shown in
Figure 4 (CNN-3). This module consisted of four modules
where each module had two convolutional layers, ReLu ac-
tivation, and a max pooling layer. We then tried to improve
the CNN by adding two dense layers at the end with 50%
dropout between the two dense layers, then by adding only
one dense layer. For our next step, we utilized several pop-
ular models: ResNet-18, VGG S, Inception-v3, Xception.
We trained our dataset using the ResNet-18 network archi-
tecture with Adagrad and Adam optimizers. For the Adam
optimizer, we tried learning rates of 0.001 and 0.0014, as
gathered from a prior research finding [7, 11].

The Inception-v3 module computes 1x1, 3x3, and 5x5
convolutions within the same module of the network and
the output of these filters is fed into the next layer [15].
We thought that the Inception-v3 model would therefore be
good to try in emotion recognition because multiple features
are extracted in one module. There are multiple features that
go into the portrayal of an emotion (mouth, eyes), therefore
we thought that this model would perform well at detecting
those multiple features.

The Xception model extends the Inception-v3 model by
replacing the modules with depthwise separable convolu-
tions [3]. The Xception model performs well because the
spatial and depthwise information in a layer can be decou-
pled. Therefore, if it was found that Inception-v3 performed
well, we hypothesized that Xception would perform better
or comparably.

3.3. Developing Video Application

We connected a video stream to the best-performing cus-
tom CNN using a standard webcam. The model was trained
on a dataset we created, comprised of 300 images of our-
selves for each emotion captured in 3 different light condi-

3



Figure 5. Validation and test accuracies when employing transfer
learning

tions (100 of each). We also applied a Haar-Cascade filter
provided by OpenCV to crop the input image faces, which
significantly improved test and training accuracy.

4. Experimental Results

With transfer learning, a final test accuracy of 53.17%
was achieved. A plot of the validation and test accuracies
over training epochs is given in Figure 5. As the accura-
cies follow the same general trend and are close together in
magnitude, overfitting is minimal.

For our custom CNNs, we found that CNN-1 performed
poorly; a low test accuracy of 15.14% indicated that it
was effectively randomly guessing emotions. Modifications
to this simple model heightened performance substantially,
and CNN-2 achieved a 59.18% accuracy. As for CNN-3,
the final results were that the neural nets tested performed
very similarly, but Xception and Resnet-18 had the best ac-
curacy. As shown in Figure 6, after 100 epochs, the custom
CNN had an accuracy of 61.7%. The training accuracy is
consistently below the testing accuracy, so it seems that the
model was simple enough that the data was not overfit. We
thought that adding dense layers would increase the accu-
racy, however we found that with one dense layer, the accu-
racy dropped to 57.1% and with two dense layers, the accu-
racy dropped to 52.7%. The accuracy per epoch is shown
in Figure 7 and 8, and it seems that with the addition of the
dense layers, the model is fitting the data worse because the
accuracy of the training data gets much lower.

The Xception model gave one of the highest accuracies
with a test accuracy of 65.6%. Due to the high accuracy of
the modified Inception-v3 model, we expected the Xception
model to also perform well because it uses the same idea of
extracting multiple features in a module and extends it with
depthwise separation. Additionally, looking at Figure 9, the
model didn’t seem to overfit that much because the test ac-

Figure 6. The accuracy of the custom CNN model on the train and
test datasets after 100 epochs.

Figure 7. The accuracy of the custom CNN with one dense layer
on the train and test datasets after 100 epochs.

curacy is within a few percent of the training accuracy.
We tested ResNet-18 by varying the hyperparameters

and optimizer and found that ResNet-18 performed best
with the Adam optimizer and 0.001 learning rate. We
started by testing the adagrad optimizer, which had a test
accuracy of 64.6%. However, it seems like the model over-
fit the data. As shown in Figure 10, at around epoch 20, the
accuracy of the training dataset starts to improve much more
than the accuracy of the test dataset, which means that the
model was fitting to the training set. The second optimizer
that we tried was the Adam optimizer and we tested using
a learning rate of 0.001 and 0.0014. With a learning rate
of 0.001, the test accuracy was 65.7% and with a learning
rate of 0.0014, the test accuracy was 64.7%. For a learning
rate of 0.001, it seems best to train the model for around
70 epochs because it is enough epochs such that the test ac-
curacy is around the highest, but it is not so many epochs
that the model starts to overfit to the training set. As seen in

4



Figure 8. The accuracy of the custom CNN model with two dense
layers and a 50% dropout in between on the train and test datasets
after 100 epochs.

Figure 9. The training and validation accuracy training using an
Xception model.

Figure 11, after around epoch 70, the training accuracy con-
tinues to increase, but the test accuracy stays the around the
same. Similarly, from Figure 12, when using the Adam op-
timizer and 0.0014 as a learning rate, the model performed
best after around 40 epochs, so the same reasons as above:
the test accuracy is around the highest and the training ac-
curacy is still relatively similar to the test accuracy.

We have summarized the test accuracies of the models
discussed above in Table 1.

5. Conclusion

If we were to continue the project, there are a few steps
that we would take to try to further improve the accuracies
of the emotion recognition. First, we would augment the
dataset to add images that have been filtered with a Gaus-
sian blur. This would mimic noise that a user may produce

Figure 10. The accuracy of the ResNet-18 model with the Ada-
grad optimizer and learning rate of 0.001 on the test and training
datasets.

Figure 11. The accuracy of the ResNet-18 model with the Adam
optimizer and learning rate of 0.001 on the test and training
datasets.

when user their webcam and help to prevent overfitting to
the training set, therefore we think that it would make the
model perform more accurately on the test set. Addition-
ally, we would incorporate time-delayed 3D-convolutional
neural networks, which use temporal information as part of
the training samples. Instead of inputting one image to the
model, we would include images that led up to that pose.
One training sample would contain n images from a se-
ries and the emotion label would be the emotion shown on
the last image. By capturing the expressions leading up
to an emotion, we hope to help the model better differen-
tiate between the different emotions. A demonstration of

5



Figure 12. The accuracy of the ResNet-18 model with the Adam
optimizer and learning rate of 0.0014 on the test and training
datasets.

Model Accuracy
Transfer learning 53.2%
CNN-2 59.2%
CNN-3 61.7%
CNN-3 with dense layer 57.1%
CNN-3 with two dense layers 52.7%
Xception 65.6%
ResNet-18 with Adagrad 64.6%
ResNet-18 with Adam (0.001 learning rate) 65.7%
ResNet-18 with Adam (0.0014 learning rate) 64.7%

Table 1. Accuracy results of various models after optimizations

the video application is given below, and can be viewed
within Adobe Reader by clicking on the frame displayed.

6. Division of Labor
For the research portion, I (Agni Kumar) worked on ap-

plying transfer learning, implementing and training CNN-
1 and CNN-2, and developing the video application. I

also created figures for these experiments and wrote vari-
ous parts of the paper.

References
[1] Challenges in representation learning: Facial expression

recognition challenge, 2012.
[2] P. Abhang, S. Rao, G. W. Gawali, and P. Rokade. Emotion

recognition using speech and eeg signal a review. 2011.
[3] F. Chollet. Xception: Deep learning with depthwise separa-

ble convolutions. CoRR, abs/1610.02357, 2016.
[4] A. Dhall, A. Kaur, R. Goecke, and T. Gedeon. Emotiw 2018:

Audio-video, student engagement and group-level affect pre-
diction. 2018.

[5] P. Ekman. Universals and cultural differences in facial ex-
pressions of emotion. 1971.

[6] I. Goodfellow. Challenges in representation learning: A re-
port on three machine learning contests. 2013.

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. CoRR, abs/1512.03385, 2015.

[8] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet
classification. CoRR, abs/1502.01852, 2015.

[9] A. Howard. Mobilenets: Efficient convolutional neural net-
works for mobile vision applications. 2017.

[10] J. Kumari, R. Rajesh, and K. Pooja. Facial expression recog-
nition: A survey. volume 58, 08 2015.

[11] D. Mack. How to pick the best learning rate for your machine
learning project, 2018.

[12] M.-A. Quinn, G. Sivesind, and G. Reis. Real-time emotion
recognition from facial expressions. 2017.

[13] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

[14] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. CoRR, abs/1409.4842,
2014.

[15] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
Rethinking the inception architecture for computer vision.
CoRR, abs/1512.00567, 2015.

[16] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
Rethinking the inception architecture for computer vision. in
proceedings of the ieee conference on computer vision and
pattern recognition. 2016.

6


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}




	fd@somedice: 


