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Abstract 

Network flow optimality on directed graphs is a central topic in graph theory and combinatorics. 

Given a complete graph 𝐺, we investigate the relationship between the score vectors of special 

tournaments on 𝐺 and its spanning trees. Score vectors are assigned to tournaments on directed 

graphs in which the champion is a vertex 𝐴 such that there is a directed path from 𝐴 to every 

other vertex 𝐵. Comparing patterns examined between generated score vector sequences and 

parking functions, we define break divisors on complete graphs with 𝑛 vertices to be 𝑛-tuples 

characterized by two distinct properties – one that defines the number of potential score vectors, 

and the other that accounts for impossible score sequences. We also show that these break 

divisors function as canonical representatives for each of the 𝑛𝑛−2 linear equivalence classes of 

divisors of degree 𝑔 on 𝐺. Specializing for complete graphs, we present an efficient algorithm 

for computing break divisors directly from spanning trees through the construction of partial 

graph orientations. This geometric bijection completes an alternate, unique proof of Arthur 

Cayley’s famous tree formula. The research results, particularly the concrete characterization of 

break divisors as mathematical tools to count and identify spanning trees and score vectors of 

tournaments with transitive champions, can have a multitude of applications to the development 

of Internet of Things frameworks. 
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Introduction 
 

This research work delves into a topic within the mathematical field of graph theory and 

combinatorics.  Below we provide definitions of several general terms that are relevant to the 

content of the report. The definitions of more specific and specialized terms, characterizing the 

nature of this research, are provided in the “Preliminaries” section. 

Complete Graphs. In the mathematical field of graph theory, 

a complete graph is a simple undirected graph in which every pair of 

distinct vertices is connected by a unique edge. We denote complete 

graphs on 𝑛 vertices as 𝐾𝑛. Complete graphs have (𝑛
2

) edges. In this paper, we study the 

mathematics of break divisors on complete graphs, taking advantage of their symmetries – one 

example being to treat all edges as equivalent.  

Digraphs. A directed graph (digraph) is a graph whose edges have a direction associated 

with them. A directed graph having no multiple edges or loops is called 

a simple directed graph. Here we study oriented graphs, which are 

digraphs containing no bidirected edges. Specifically, we look into 

complete oriented graphs, in which each pair of vertices is joined by a 

single edge having a unique direction. We define such graphs to be tournaments. 

 

 

Preliminaries 

 

In this section, we introduce definitions and concepts referenced throughout the paper and their 

connections to Arthur Cayley’s famous tree formula, for which we will provide a new proof. In a 

later section, we also show that there are exactly 𝑛𝑛−2 score vectors of tournaments in which a 

given player is a transitive champion. 

Digraph of 𝐾4 
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Tournaments. A tournament is a directed graph obtained by assigning a direction for 

each edge. For the purposes of this research, tournaments are considered to be orientations of 

complete graphs. Here, a tournament is structured to interpret the outcome of a round-robin 

tournament: every player encounters every other player exactly once, and no draws occur. 

Tournament Digraphs. Modeling a tournament as a directed graph, vertices correspond 

to players, and edges between each pair of players is oriented from the winner to the loser. We 

say that if player 𝐴 beats player 𝐵, then 𝐴 dominates 𝐵. As there are two possible orientations for 

each edge, there are 2(𝑛
2) total possible tournaments on 𝐾𝑛. 

Transitive Champions. Regarding a tournament as a directed version of 𝐾𝑛, we define 

the transitive property to mean that whenever there is an arrow from a vertex 

𝐴 to a vertex 𝐵 and an arrow from 𝐵 to a vertex 𝐶, there is also an arrow 

from 𝐴 to 𝐶. In this paper, a transitive champion is a vertex 𝐴 such that there 

is a directed path from 𝐴 to every other vertex 𝐵. Tournaments in which a 

vertex 𝑞 is a transitive champion are termed 𝑞-connected orientations.[1] 

Score Vectors. For a given vertex, we assign the number of head arrows adjacent (i.e. 

pointing) to it as the indegree of the vertex and the number of tail arrows adjacent to it as its 

outdegree. For this paper, we have chosen to define “score vectors” as the outdegree counts 

(wins) of each vertex in clockwise order starting from vertex 𝐴 (see Fig. 1 below). 

 

transitive 

champion A 

Figure 1. Here we show 

two tournaments with vertex 

𝐴 as the transitive champion 

and their corresponding 

score vector notations 

detailing each vertex’s total 

number of wins. 
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Spanning Trees. A spanning tree 𝑇 of an undirected graph 𝐺 is a connected subgraph 

that includes all of the vertices of 𝐺 in which there 

are no cycles. In general, a graph may have several 

spanning trees, though an unconnected graph will 

not contain a spanning tree. (The properties of 

spanning trees, specifically on complete graphs, are 

discussed thoroughly in the “Mathematical Tools 

and Methods” section – Cayley’s Formula.)  

Parking Functions. For the purposes of alignment with the upcoming definition of break 

divisors, we define a parking function of length 𝑛 − 1 to be a sequence (𝑎0, 𝑎1, … , 𝑎𝑛−2) of 

nonnegative integers such that its non-decreasing rearrangement (𝑏0, 𝑏1, … , 𝑏𝑛−2) satisfies 𝑏𝑖 ≤ 𝑖 

for all 𝑖. We denote by 𝜌𝑛 the set of all parking functions of length 𝑛.[3] 

Chip-firing. There are many variations to the chip-firing game. Typically, we let 𝐺 =

(𝑉, 𝐸) be a finite connected undirected graph without loops. The chip configuration is denoted 

by the assignment of a nonnegative integer 𝑐(𝑣) number of chips to each vertex 𝑣 of 𝐺.[4] Letting 

𝑁 denote the total number of chips, we have ∑ 𝑐(𝑣) = 𝑁𝑣∈𝑉(𝐺) .  

If a vertex 𝑣 has at least as many chips on it as its degree, i.e. 𝑐(𝑣) ≥ 𝑑𝑒𝑔 (𝑣), we say 

that 𝑣 is ready to fire. A vertex 𝑣 that is ready to fire is able to send chips to its neighbors by 

sending one chip along each of its incident edges. In turn, the value of each neighbor is increased 

by one and the value at the vertex that fired is decreased by its degree. A chip configuration is 

stable if no vertex is ready to fire, that is, if 𝑐(𝑣) < 𝑑𝑒𝑔(𝑣) for all vertices 𝑣 ∈ 𝑉(𝐺). Two chip 

configurations are considered equivalent if one chip configuration can transform into the other 

through a series of firings and reverse-firings. 

 
Figure 2. 16 total spanning trees on 𝐾4. 

 

 

 

Figure 2. 16 total spanning trees on 𝐾4. 
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Research Objective 
 

The objective of this research work is to provide a new and simple proof of Arthur Cayley’s 

famous tree formula through the use of the Cori-LeBorgne result (defined in the “Mathematical 

Tools and Methods” section), while also showing that there are exactly 𝑛𝑛−2 score vectors of 

tournaments in which a given player is a transitive champion. We do this by finding a bijection 

between spanning trees and break divisors on complete graphs through the establishment of an 

explicit inverse map. An outline is given below: 

1. Using the Cori-LeBorgne result, we show that there are exactly 𝑛𝑛−2 equivalence 

classes of divisors of any given degree (e.g. degree 0).  

2. Next, we show that there are exactly 𝑛𝑛−2 different break divisors on 𝐾𝑛 by showing 

that there is exactly one break divisor in each equivalence class.  

3. Finally, we show that the correspondence between spanning trees and break divisors 

is really a bijection, by finding an explicit inverse map. We apply this research, and 

the interesting connections revealed through the process, to the theory of network 

flow on directed graphs. 

 

Mathematical Tools and Methods  
  

In this section, we introduce the mathematical tools necessary to fulfill the above outline. 

 

Cayley’s Formula (1889). The number of spanning trees in a complete graph 𝐾𝑛 is 𝑛𝑛−2.  

 

Break Divisors. To define the concept of break divisors, we set up a scenario – let 𝑇 be a 

spanning tree of a graph 𝐺.  Let 𝑒1, … , 𝑒𝑔 be the edges not in 𝑇.  For each 𝑖, choose a vertex 𝑣𝑖 as 

one of the two endpoints of 𝑒𝑖. Assign a single chip to each such 𝑣𝑖.  Let 𝐷 = 𝑣1 + ⋯ + 𝑣𝑔 be 

the corresponding divisor. This will be a break divisor, and every break divisor has this form.[9] 
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(We can get coefficients bigger than 1 in 𝐷 because the same vertex 𝑣 can be an endpoint of 

more than one edge 𝑒𝑖.) As we use them throughout this paper, break divisors can also be defined 

as sequences of length 𝑛 that fit the following properties[5]: 

(i) Entries sum to (𝑛−1
2

). 

(ii) When the entries of 𝐷 are written in non-decreasing order, then for each 𝑘 =

1, … , 𝑛, the partial sum 𝑠𝑘 = 𝑎1 + ⋯ + 𝑎𝑘 should satisfy 𝑠𝑘 ≥ (𝑘−1
2

). 

(i) and (ii) above imply that 0 ≤ 𝑎𝑖 , 𝑏𝑖 ≤ 𝑛 − 2: taking 𝑘 = 1, 𝑠1 ≥ (0
2
) = 0. Furthermore, we 

know that 𝑠𝑛−1 ≥ (𝑛−1−1
2

) = (𝑛−2
2

) and 𝑠𝑛 = (𝑛−1
2

). Therefore, the maximum value of an 𝑎𝑖 , 𝑏𝑖 

is (𝑛−1
2

) − (𝑛−2
2

) = 𝑛 − 2. (The concept of break divisors was first introduced in 2008 as an 

abstract way to characterize tropical curves[12]. However, the characterization of these break 

divisors was not concrete; they could not be described with a set of properties and thus could not 

be directly counted or easily applied to general situations. That break divisors, as defined 

previously, are in bijection with sequences satisfying (i) and (ii) can be verified by the 

combination of Theorem 4.8 and Proposition 4.11 in [ABKS], in addition to specialization to the 

case 𝐺 = 𝐾𝑛.) 

 

Cori-LeBorgne result (2014).[6] (𝑎1, … , 𝑎𝑛) and (𝑏1, … , 𝑏𝑛) on 𝐾𝑛 are chip-firing 

equivalent if and only if the sum of 𝑎𝑖 equals the sum of 𝑏𝑖 and for all 𝑖, 𝑗 we have that 

𝑎𝑖 − 𝑎𝑗 ≡ 𝑏𝑖 − 𝑏𝑗 (mod 𝑛). 

  

Mixed graphs (partial orientations). A mixed graph 𝐺 = (𝑉, 𝐸, 𝐴) is a mathematical 

object consisting of a set of vertices 𝑉, a set of undirected edges 𝐸, and a set of directed edges 𝐴. 

(See the “Appendix” for applications of mixed graphs in establishing a geometric bijection 

between break divisors and spanning trees on complete graphs.) 
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Results and Discussion 

 

As we are investigating several smaller problems to reach the overarching goal, we have broken 

up the research results into multiple parts. Below, we examine the total number of unique (i.e. 

rearrangements within sequences not included) score vectors of tournaments for which vertex 𝐴 

is a transitive champion out of the total possible number of tournament digraphs on 𝐾𝑛. What are 

considered to be identical score sequences, applicable on 𝐾𝑛 for 𝑛 ≥ 3, serve to explain the fact 

that different tournaments can have the same score vector.  

Score vectors for tournaments in which 𝑨 is a transitive champion. Beginning with 

small values of 𝑛, we see the following emerging patterns: 

 As shown in Fig. 3 below, for 𝑛 = 2, we see that there is 22−2 = 1 score vector (which 

happens to be “unique”) in which 𝐴 is a transitive champion among the total 2(2
2) = 2 

tournaments. 

 
Figure 3. Tournaments on 𝐾2; red box marks score vector. 

 

 As shown in Fig. 4, for 𝑛 = 3, we see that there are 33−2 = 3 unique score vectors in 

which 𝐴 is a transitive champion among the total 2(3
2) = 8 tournaments. 

 

 

1 

Figure 4. 

Tournaments on 

𝐾3. Highlighted 

graphs mark score 

vectors; (2,1,0) and 

(2,0,1) are treated 

as identical. 
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Figure 5. Tournaments 

on 𝐾4; highlighted 

graphs mark score 

vectors. (3,1,0,2) and 

(3,0,1,2), for example, 

are treated as identical. 

 Among the total 2(4
2) = 64 tournaments on 𝐾4, 35 were counted to have vertex 𝐴 as a 

transitive champion.  As shown in Fig. 5, 16 of these 35 score vectors were unique: 

(3,1,0,2), (3,1,1,1), (2,1,1,2), (3,0,1,2), (3,0,2,1), (2,1,2,1), (2,0,2,2), (1,2,1,2), (1,2,2,1), 

(1,1,2,2), (3,2,0,1), (2,2,0,2), (3,2,1,0), (2,2,1,1), (3,1,2,0), and (2,2,2,0). 

  

 

 

 

 

 

 

We see from the above examples that the total number of unique score vectors of 

tournaments on 𝐾𝑛 in which a given vertex is a transitive champion seems to be 𝑛𝑛−2 – a 

connection to Cayley’s famous tree formula! To prove this conjecture, we start by organizing the 

score vectors according to 𝐴’s score so as to possibly reveal any hidden patterns: 

 

     

 

 

Figure 6. Score vectors arranged by 𝐴’s score. The numbers included within the red brackets above each 

column are permutated in their corresponding columns, excluding 𝐴’s score. 
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Notice that by arranging the score vectors by the convention presented in Fig. 6, the following 

patterns are revealed. (The values to the left of the colon correspond to 𝐴’s score.) 

 For groups in 𝑛 = 3 

 2: all permutations of {0,1} sum to 1 = 3 – 2 

 1: all permutations of {1,1} sum to 2 = 3 – 1  
 

 For groups in 𝑛 = 4 

 3a & 3b: all permutations of {1,1,1} and {0,1,2} sum to 3 = 6 – 3  

 2a & 2b: all permutations of {1,1,2} and {0,2,2} sum to 4 = 6 – 2  

 1: all permutations of {1,2,2} sum to 5 = 6 – 1  

 

Each case consists of a value for 𝐴 followed by all permutations of some given set of values for 

𝐵, 𝐶, and 𝐷. Moreover, we are getting exactly all such sequences (i.e. every possibility is being 

accounted for). If these patterns hold for all 𝑛, then counting score vectors of the desired type 

would be reduced to a concrete combinatorial problem involving sums of factorials; however, 

this is a point we must check. 

Furthermore, investigating the sums of the permutations of the unique score vectors, we 

find that our problem has now become to use the digits {0, 1, 2, … , 𝑛 − 2} to count the number 

of permutations of size 𝑛 − 1 that add to (𝑛
2
) − 𝑘, where 𝐴’s score is 𝑘, and 𝑘 ranges from 1 to 

𝑛 − 1 inclusive. This should come to be 𝑛𝑛−2; noting the presence of this same expression 

within Cayley’s formula, we ask whether there is a way to associate a unique score vector with 𝐴 

as a transitive winner to each spanning tree in 𝐾𝑛. A 1-1 correspondence of this type would show 

that the number of such score vectors equals the number of spanning trees, an important finding.  

 

Counting spanning trees on complete graphs and parking functions. We know by 

Cayley’s formula that the total number of spanning trees on 𝐾𝑛 is 𝑛𝑛−2. However, counting them 

manually, in the following manner, enables for us to directly associate them with score vectors. 

2 
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Taking 𝐾4 as an example, we label a regular polygon with 𝑛 sides as 

given to the right. Without accounting for rearrangements, we get the 

five sequences: 0-0-0, 0-0-1, 0-0-2, 0-1-1, and 0-1-2. Once we account 

for the different possible orders of these sequences (i.e. the number of 

spanning trees), we get 1 + 3 + 3 + 3 + 6 = 16 = 44−2.  

 Through parking functions, we find a way to associate a unique score vector with A as a 

transitive winner to each spanning tree in 𝐾𝑛. Taking the graph 𝐾5, we expect to count 55−2 =

125 spanning trees. Below, we generate all possible 4-term sequences of the form (𝑠0, … , 𝑠𝑛−2), 

where each 𝑠𝑖 is ≤ 𝑖 for all 𝑖 – the set of parking functions on 𝐾5. The integers on the right side 

of the arrows indicate the number of possible rearrangements of the left-hand-side sequence. 

These integers sum to 125, as expected. However, will a generation of all possible unique score 

vectors on 𝐾5 yield 𝑛𝑛−2 = 55−2 = 125 as well, as it did for the cases 𝑛 = 3 and 4?  

0-0-0-0 →  1  0-0-2-2 → 6 

 0-0-0-1  →  4  0-0-2-3 → 12 

 0-0-0-2 →  4  0-1-1-1 →  4 

 0-0-0-3 →  4  0-1-1-2 → 12        parking functions 

 0-0-1-1  →  6  0-1-1-3 → 12 

 0-0-1-2 →  12  0-1-2-2 → 12 

 0-0-1-3 →  12  0-1-2-3 → 24 
 

Notice how the number of the sequences (without rearrangements) is 2 for 𝑛 = 3, 5 for 

𝑛 = 4, and 14 for 𝑛 = 5. These are the Catalan numbers! In our case, the Catalan number that 

corresponds to the sequence count (without rearrangements) for a given 𝑛 is 
1

𝑛
(2𝑛−2

𝑛−1
). The 

question now becomes how to count the total number of rearrangements of the 
1

𝑛
(2𝑛−2

𝑛−1
) parking 

functions (i.e. the number of spanning trees).  

In an attempt to establish a 1-1 correspondence between unique score vectors of 

tournaments with transitive champions and rearrangements of parking functions, we list the 
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following for the 125 spanning trees on 𝐾5 as a test to see whether we achieve, like for 𝐾3 and 

𝐾4, matching counts. Since the total possible number of directed tournaments on 𝐾5 (2(5
2) =

1024) is too large to depict manually, we provide a simple listing of all potential score vectors. 

(For each of 𝐾3 and 𝐾4, the set of all potential score vectors was identical to the set of actual 

score vectors.) The results reveal an important problem (see Fig. 7 description), which we seek 

to amend by introducing the concept of break divisors, an amazing mathematical tool for solving 

graph theory problems. 

Score Vector Rearrangements   

(4) 0-0-3-3 6   

(4) 0-1-2-3 24   

(4) 0-2-2-2 4   

(4) 1-1-1-3 4   

(4) 1-1-2-2 6   

(3) 0-1-3-3 12   

(3) 0-2-2-3 12   

(3) 1-1-2-3 12   

(3) 1-2-2-2 4   

 

We conclude that there must be some score vectors that could not possibly represent 

tournaments on complete graphs; specifically in this case, 2 score vectors and 10 rearrangements 

are extraneous. By translating the score vectors into the language of break divisors, we find that 

the following score vectors and their corresponding break divisor forms do not actually qualify 

as break divisors: (4) 0-0-3-3 → (0,0,0,3,3) and (1) 0-3-3-3 → (0,0,0,2,4), due to a violation of 

the characteristics of break divisors.[7] Applying a similar conversion to break divisors upon the 

score vectors on 𝐾6, we find that the sequences marked in red could not be possible score vectors 

(2) 0-2-3-3 12 

(2) 1-1-3-3 6 

(2) 1-2-2-3 12 

(2) 2-2-2-2 1 

(1) 0-3-3-3 4 

(1) 1-2-3-3 12 

(1) 2-2-2-3 4 

 

Figure 7. Score vectors, 

grouped by vertex A’s 

score, and corresponding 

number of sequence 

rearrangements. Note that 

instead of 14 unique score 

vectors and 125 total 

rearrangements (i.e. 

spanning trees), the table 

to the left shows that 

there are 16 different 

score vectors and 135 

total rearrangements. 
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of tournaments in which 𝐴 is a transitive champion. As shown in Fig. 8, we find that there are 49 

sequences, though ideally there should be 42 (or 1296 rearrangements) that work.  

 

𝑨 = 5 𝑨 = 4 𝑨 = 3 𝑨 = 2 𝑨 = 1 
 

(5) 0-0-2-4-4 

(5) 0-0-3-3-4 

(5) 0-1-1-4-4 

(5) 0-1-2-3-4 

(5) 0-1-3-3-3 

(5) 0-2-2-2-4 

(5) 0-2-2-3-3 

(5) 1-1-1-3-4 

(5) 1-1-2-2-4 

(5) 1-1-2-3-3 

(5) 1-2-2-2-3 

(5) 2-2-2-2-2 
 

 

(4) 0-0-3-4-4 

(4) 0-1-2-4-4 

(4) 0-1-3-3-4 

(4) 0-2-2-3-4 

(4) 0-2-3-3-3 

(4) 1-1-1-4-4 

(4) 1-1-2-3-4 

(4) 1-1-3-3-3 

(4) 1-2-2-2-4 

(4) 1-2-2-3-3 

(4) 2-2-2-2-3 

 

 

 

(3) 0-0-4-4-4 

(3) 0-1-3-4-4 

(3) 0-2-2-4-4 

(3) 0-2-3-3-4 

(3) 0-3-3-3-3 

(3) 1-1-2-4-4 

(3) 1-1-3-3-4 

(3) 1-2-2-3-4 

(3) 1-2-3-3-3 

 

 

 

(2) 0-1-4-4-4 

(2) 0-2-3-4-4 

(2) 0-3-3-3-4 

(2) 1-1-3-4-4 

(2) 1-2-2-4-4 

(2) 1-2-3-3-4 

(2) 1-3-3-3-3 

(2) 2-2-2-3-4 

(2) 2-2-3-3-3 

 

 

 

 

(1) 0-2-4-4-4 

(1) 0-3-3-4-4 

(1) 1-1-4-4-4 

(1) 1-2-3-4-4 

(1) 1-3-3-3-4 

(1) 2-2-2-4-4 

(1) 2-2-3-3-4 

(1) 2-3-3-3-3 

 

   

 

Figure 8. Score vectors (without rearrangements) for 𝐾6.  

 

Thus, we see that when mapping unique score vectors to spanning trees on 𝐾𝑛, a 

generation of all possible parking function rearrangements is indeed 𝑛𝑛−2, but a similar 

generation of all possible unique score vectors is slightly larger than 𝑛𝑛−2 for 𝑛 > 4: 

 

 

 

We may represent the number of unique score vectors (without the subtraction 

correction), which can be defined by the property (i) of break divisors, by a generating function. 

Suppose we divide (𝑛−1
2

) objects into 𝑛 boxes such that each box can have up to 𝑛 − 2 objects. It 

can be shown that the number of divisors[8] (not necessarily break divisors, as property (ii) has 

not been accounted for) on a complete graph with entries between 0 and 𝑛 − 2 inclusive that sum 

to (𝑛−1
2

) is equivalent to the coefficient of 𝑥(𝑛−1
2 ) in the generating function  

𝑛𝑛−2 = 
Number of 

rearrangements of 

parking functions 
= 

Number of unique 

score vectors 
− 

Some quantity 

dependent 

upon 𝑛 
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(1 + 𝑥 + 𝑥2 + ⋯ + 𝑥𝑛−2)𝑛 = (
1 − 𝑥𝑛−1

1 − 𝑥
)

𝑛

, 

where 
1

(1−𝑥)𝑛 = (𝑛−1
𝑛−1

) + ( 𝑛
𝑛−1

)𝑥 + (𝑛+1
𝑛−1

)𝑥2 + ⋯.  

When expanded out, we get 16 for 𝑛 = 4 and 135 for 𝑛 = 5 as expected. We look to the 

properties of break divisors – rather, we set them to be class representatives of equivalence 

classes defined by the Cori-LeBorgne result – to find a way to eliminate sequences that do not 

qualify as break divisors, through the incorporation of property (ii). 

 

Fundamental cycles and an explicit inverse map. In the “Appendix” of the report, we 

attempt to establish a bijection between spanning trees and break divisors. It was found that we 

may achieve this by tackling both directions (spanning trees → break divisors and break divisors 

→ spanning trees) in two different ways.  

 

Equivalence classes and break divisors as class representatives. Here, we follow the 

map provided in the “Research Objective” section.  

We begin by showing that there are exactly 𝑛𝑛−2 equivalence classes of divisors of any 

given degree. The definition of equivalence we use here is that two sequences (𝑎1, … , 𝑎𝑛) and 

(𝑏1, … , 𝑏𝑛) of integers (i.e. two “divisors”) are equivalent if and only if ∑ 𝑎𝑖 = ∑ 𝑏𝑖 and 𝑎𝑖 −

𝑎𝑗 ≡ 𝑏𝑖 − 𝑏𝑗 (mod 𝑛) for all 𝑖, 𝑗. The goal is to show that, restricting to divisors with sum of 

entries equal to (𝑛−1
2

), there is exactly one break divisor in each equivalence class, and the 

number of equivalence classes is 𝑛𝑛−2. 

We begin by noting that every 𝑛-tuple of integers (𝑎1, … , 𝑎𝑛) with a fixed sum is 

equivalent to one in which 𝑎1 = 0, and then furthermore to one in which 𝑎𝑖 ∈ {0,1, … , 𝑛 − 1} for 

all 𝑖 = 2, … , 𝑛 − 1. Thus, the configuration becomes (0, 𝑎2, … , 𝑎𝑛), where the value of 𝑎𝑛 is 

4 

3 
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determined by the values of 𝑎2 … 𝑎𝑛−1, since the sum of the ∑ 𝑎𝑖 is a fixed value 𝑔. Moreover, it 

is easy to check that two such 𝑛-tuples (𝑎1, … , 𝑎𝑛) and (𝑏1, … , 𝑏𝑛) are equivalent if and only if 

they are equal: substituting 𝑗 = 1 into the equivalence class definition, we get that 𝑎𝑖 ≡ 𝑏𝑖  (mod 

𝑛). Since the values of 𝑎𝑖 and 𝑏𝑖 are restricted to the range [0, 𝑛 − 1], 𝑎𝑖 must be equal to 𝑏𝑖 for 

the congruence to be held. Thus, 𝑎𝑖 = 𝑏𝑖  for all 𝑖. For 𝑖 ranging from 2 to 𝑛 − 1 (𝑛 − 2 choices), 

there are 𝑛𝑛−2 ways to construct pairs of chip-firing equivalent divisors, so there are 𝑛𝑛−2 

equivalence classes of any given degree.                 

Suppose that 𝑎 = (𝑎1, … , 𝑎𝑛) and 𝑏 = (𝑏1, … , 𝑏𝑛) are two sequences of integers 

satisfying the break divisor properties (i) and (ii) such that 𝑎 ~ 𝑏, i.e. a and b are equivalent with 

respect to the established equivalence relation. We claim that 𝑎 = 𝑏. To see this, we can assume 

without loss of generality that both 𝑎 and 𝑏 are sorted in increasing order. Then 0 ≤ 𝑎𝑘 − 𝑎1 ≤

𝑛 − 2 for all 𝑘 = 1, … , 𝑛 and similarly for 𝑏𝑘 − 𝑏1. Since 𝑎 ~ 𝑏, we have by the established 

equivalence relation that 𝑎𝑘 − 𝑎1 ≡ 𝑏𝑘 − 𝑏1 (mod 𝑛) for all 𝑘, and thus that 𝑎𝑘 − 𝑎1 = 𝑏𝑘 − 𝑏1 

for all 𝑘. Summing from 𝑘 = 1 to 𝑛 gives (𝑎1 + ⋯ + 𝑎𝑛) − 𝑛𝑎1 = (𝑏1 + ⋯ + 𝑏𝑛) − 𝑛𝑏1, and 

because ∑ 𝑎𝑖 = ∑ 𝑏𝑖 = (𝑛−1
2

), 𝑎1 = 𝑏1. Since 𝑎𝑘 − 𝑎1 = 𝑏𝑘 − 𝑏1 for all 𝑘, it now follows that 

𝑎 = 𝑏 as claimed – this proves that each equivalence class contains at most one sequence  (i.e. 

break divisor) satisfying (i) and (ii).                  

Below, we provide an argument to show that each equivalence class with total sum equal 

to (𝑛−1
2

) contains at least one sequence satisfying property (ii). 

 Let 𝑎 = (𝑎1, … , 𝑎𝑛) be any member of the equivalence class. By rearranging, we may 

assume without loss of generality that 𝑎1 ≤ ⋯ ≤ 𝑎𝑛.  Suppose that 𝑎1 <  0.  Then we 

must have 𝑎𝑘+1 ≥ 𝑘 for some 𝑘 = 1, … , 𝑛 − 1; otherwise we get a contradiction. 
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Assuming, for example, that 𝑎𝑘+1 < 𝑘 for all 𝑘, the greatest possible integer value for 

𝑎𝑘+1 is 𝑘 − 1. In turn the largest possible ∑ 𝑎𝑖 value is 

(−1 + 0 + 1 + ⋯ + 𝑛 − 2) =
(𝑛 − 2)(𝑛 − 1)

2
− 1 = (

𝑛 − 1

2
) − 1. 

Since the required ∑ 𝑎𝑖 value was (𝑛−1
2

), we can see that at the most extreme case, the 

condition 𝑎𝑘+1 < 𝑘 causes ∑ 𝑎𝑖 to fall too short. Thus, 𝑎𝑘+1 ≥ 𝑘 for some 𝑘 in the range 

1, … , 𝑛 − 1.                            

 We note that we can subtract 𝑘 from each of 𝑎𝑘+1, … , 𝑎𝑛 and add 𝑛 − 𝑘 to each of 

(𝑎1, … , 𝑎𝑘) without changing the current equivalence class, and the new (re-sorted if 

necessary) sequence 𝑏′ = (𝑏1, … , 𝑏𝑛) satisfies 𝑏1 > 𝑎1. (This can be rephrased as a chip-

firing argument, as we are simultaneously firing vertices 𝑣𝑘+1, … , 𝑣𝑛  in 𝐾𝑛.) 

 We continue sorting in this way until we get to an ordered sequence (𝑐1, … , 𝑐𝑛) with all 

entries non-negative. Next, we use induction on 𝑚 (starting with the base case 𝑚 = 1 just 

established) and a similar argument as above to show that for each 𝑚 = 1, … , 𝑛 − 1 there 

is a sorted sequence in the same equivalence class with 𝑠𝑘 ≥ (𝑘−1
2

) for all 𝑘 = 1, 2, … , 𝑚. 

 

For the base case 𝑚 = 1, it is calculated that 𝑠1 ≥ (1−1
2

) = 0 from the sorting rules above. Now 

we suppose that for 𝑚 = 𝑘, 𝑠1 ≥ (1−1
2

) = 0, … , 𝑠𝑘 ≥ (𝑘−1
2

) holds true. For 𝑚 = 𝑘 + 1, we will 

show that 𝑠𝑘+1 ≥ (𝑘
2
). Another way to write this expression is 

min(𝑠𝑘+1) = (
𝑘 − 1

2
) + 𝑐𝑘+1 , 

and the objective becomes to show that 𝑐𝑘+1 ≥ (𝑘
2
) − (𝑘−1

2
) = 𝑘 − 1 for all 𝑘. Right away, we 

see that the “all 𝑘” condition may not hold true for some sequences (despite being non-negative) 

in the equivalence class, so we must show that it holds after possibly replacing (𝑐1, … , 𝑐𝑛) with   

an equivalent sequence. 
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For example, when dealing with cases in which 𝑐1 ≥ 0, we take a similar approach as 

before in deliberately giving a contradiction; supposing that 𝑐𝑘+1 < 𝑘 − 1, the greatest possible 

integer value for 𝑐𝑘+1 is 𝑘 − 2. Therefore the largest possible ∑ 𝑐𝑖 value is 

(−2 + −1 + 0 + ⋯ + 𝑛 − 3) =
(𝑛 − 3)(𝑛 − 2)

2
− 3 = (

𝑛 − 2

2
) − 3. 

Since the required ∑ 𝑐𝑖 value is (𝑛−1
2

) by definition, we can see that at the most extreme case, the 

condition 𝑐𝑘+1 < 𝑘 causes ∑ 𝑐𝑖 to be much too small. Hence, we get that 𝑐𝑘+1 ≥ 𝑘 − 1 and 

min(𝑠𝑘+1) = (𝑘−1
2

) + 𝑘 − 1 = (𝑘
2
) for some 𝑘 in the range 1, … , 𝑛.  

In order to ensure that 𝑐𝑘+1 ≥ 𝑘 − 1 for all 𝑘, we must apply a transformation of sorts. 

We note that adding (𝑛 − 𝑘 − 1) to each of (𝑐1, … , 𝑐𝑘) and subtracting 
(𝑛−𝑘−1)(𝑘)

𝑛−𝑘
 from each of 

𝑐𝑘+1, … , 𝑐𝑛 for any desired 𝑘 value, where 1 ≤ 𝑘 ≤ 𝑛 and 
(𝑛−𝑘−1)(𝑘)

𝑛−𝑘
 is an integer, does not 

change the equivalence class in which a divisor resides. Repeated transformations and re-sortings 

yield an equivalent sequence 𝑐′ for which 𝑐′𝑘+1 ≥ 𝑘 − 1 for all 𝑘 and thus that each equivalence 

class contains exactly one break divisor. (A concrete example of this concept would be the 

sequence (0, 1, 1, 1), which is a break divisor but does not fulfill 𝑐3+1 ≥ 3 − 1, for 1 ≥ 2. 

Applying the above transformation and choosing 𝑘 = 2, we have (0, 1, 1, 1) → 𝑐′ = (1, 2, 0, 0) = 

(0, 0, 1, 2), which does fulfill 𝑐′𝑘+1 ≥ 𝑘 − 1 for all 𝑘.)               

 

Conclusions, Applications to IoT, and Future Work 
 

The results obtained from this research project have allowed us to characterize break 

divisors in a unique and compact form by properties (i) and (ii). By relating them to spanning 

trees on 𝐾𝑛, we are able to reduce the complex counting problem to a slightly simpler problem. 

We also confirm that the relationship between spanning trees and break divisor 𝑛-tuples is 
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indeed a bijection. Combined with the proof that each equivalence class of divisors contains 

exactly one break divisor, we have given a new proof of Cayley’s theorem. Furthermore, we 

show that the number of score vectors of tournaments in which a given player 𝐴 is a transitive 

champion is 𝑛𝑛−2.  Future work includes exploring the relationship between the Jacobian of 𝐾𝑛 

and Prüfer codes[10,11] and extending the concept of break divisors represented as 𝑛-tuples to non-

complete graphs. A map of the general idea is given here: 

 

          

 

 

 

Distinctive ideas and concepts explored in this report include break divisors on complete 

graphs, transitive champions and score vectors, and partial orientations to establish a bijection 

between such break divisors and spanning trees. Thus, this research has the potential to aid in the 

construction of reliable multi-state flow networks in a multitude of ways. Examples include 

infrastructure applications within the Internet of Things (IoT), in which one system is dominant 

over the others. Such designs and structures can be modeled by score vectors for tournaments 

with transitive champions. Healthcare applications include modeling the possible stages of 

cancer movement through partial graph orientations to ensure early detection. Regarding break 

divisors as identification tools for spanning trees may help support the interaction between 

“things”, allowing for the development of complex structures through distributed computing. 

Furthermore, the IoT, a sensor-based system, is expected to generate large amounts of data from 

diverse locations that is aggregated very quickly, thereby increasing the need to better index, 

store, and process such data. Defining break divisors as number sequences, efficient algorithms 

can be created to accomplish such feats. 

single vertex is a  

transitive champion 
Orientation of 𝑲𝒏 

 

T (spanning tree) 

Possible future applications: 

network design, 

bioinformatics, knot theory, 

studying molecules 

    bijection 

 isomorphism (?) 

 

Jac(𝑲𝒏) 
 

Prüfer code ∈ 𝒁𝒏
𝒏−𝟐,   

𝒁𝒏 = {𝟏, 𝟐, … , 𝒏}  
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Appendix 

Below we propose two conjectures, which we hope to soon further develop into geometric direct 

bijections between integer 𝑛-tuples satisfying (i) and (ii), i.e. break divisors, and spanning trees on 

complete graphs, without making use of intermediaries such as parking functions or Prüfer codes.  

Fundamental cycles and an explicit inverse map. Here we attempt to establish a 

bijection between spanning trees and break divisors. It was found that we may achieve this by 

tackling both directions (spanning trees → break divisors and break divisors → spanning trees) 

in two different ways. 

Fundamental cycles are defined to be cycles formed after adding a single edge to a 

spanning tree. Because there is a distinct fundamental cycle for each edge, there is a 1-1 

correspondence between fundamental cycles and edges not in the spanning tree. Below we 

employ a method of associating break divisors to spanning trees that takes advantage of mixed 

graphs, or partially directed graphs, and captures the “essence” of fundamental cycles. The 

undirected edges in red on each graph below represent the spanning tree, while the edges in 

black (i.e. those not in the spanning tree) are directed such that each black edge, capped by two 

red endpoints from which two or more red segments emanate and forming a cycle with said red 

segments, will be oriented in a direction away from the smallest vertex in that cycle. Below we 

show this assignment on the spanning trees of 𝐾4. The break divisors included below each graph 

consist of all possible sequences of four integers within the range [0,2] that sum to 3.  
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Figure 9. Associating break divisors to spanning trees on 𝐾4 via mixed graphs. 

 

Now we tackle the reverse direction. Below we give an algorithm serving as an explicit inverse 

to the break divisors → spanning trees bijection. Labeling the vertices of 𝐾𝑛 as 𝑣1, … , 𝑣𝑛, we 

have the following. We conjecture that the algorithm gives an inverse mapping for all 𝑛. 

 

 

 

 

 

 

 

  

        

Input: A break divisor 𝐷. 

 Initialize 𝐵 ≔ 𝐷, 𝑆 ≔ 𝑣𝑛 , 𝑇 ≔ empty set, and 𝐻 ≔ 𝐺. 
 

 WHILE 𝑆 does not contain all of {𝑣1, … , 𝑣𝑛} DO 
Let 𝑣 be the LARGEST vertex not in 𝑆 which is 

connected to 𝑆 by an edge in 𝐻. 
Let 𝑒 = 𝑣𝑤 be the SMALLEST edge in 𝐻 connecting 𝑣 to 

some 𝑤 in 𝑆. 
  

IF deleting 𝑒 from 𝐻 and subtracting 1 chip from 𝐵 

at 𝑣′ gives a break divisor 𝐵′ on 𝐻′ = 𝐻 − 𝑒 
 Set 𝐻 ≔ 𝐻′ and 𝐵 ≔ 𝐵′. 
ELSE 

 Set 𝑆 ≔ 𝑆 ⋃ 𝑣 and 𝑇 ≔ 𝑇 ⋃ 𝑒. 
 

Output: the spanning tree 𝑇. 
 

Figure 10. Algorithm for geometric bijection. 
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